
Based on openFace project
Preprocessing
• Face and landmark detection using DLIB
• Crop face, rotate it , and scale the to 96x96 pixels

DNN architecture
• Based on the FaceNet architecture
• # Layers : 24
• # parameters : 3 733 968
Learning goal
The goal of the training phase is to obtain the best representation that
separates the positives identities from negatives using triplet embedding

Triplet selection constraint 

xai: anchor sample, xpi: positive sample, xni: negative sample, ⍺: margin

Triplet Loss Function

L: loss function, xai: anchor sample, xpi: positive sample, xni: negative sample, ⍺: margin
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1. Motivation
The goal of this work is to create cryptographic keys from biometric data
that are resistant to quantum computing. The work is motivated by the
advances in Quantum computing. For example, Groover algorithm
reduces the security of symmetric keys by half.

4. Datasets

5. Face verification system

Table1 : Datasets used for the training and evaluation of the DNN model

2. Goal
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values

Database Number of 
subjects

Number of 
images

Usage

MS-celeb-1M 99 892 8 million Training DNN 
models

LFW 5 750 13 320 Performance 
evaluation

MOBIO 150 18 000 Performance 
evaluation

Key length
(bits)

Encoded Key T (number of 
corrections )

FRR 
MOBIO

FAR 
MOBIO

516 (86 blocs x 6) 2635 (86 blocs X 31) 602 (86 X 7 ) 0 % 0.3%
512 (32 X 16) 1008 (16 X 63) 176 (16 X 11) 4 % 0%
510 (51 X 10) 3213 (51 X 63) 663 (51 X 13) 0 % 0.56 % 
528 (24 X 22) 3084 (24 X 127) 552 (24 X 23) 0.8 % 0.3 %
420 ( 28 X 15) 3556 (28 X 127) 756 (28 X 27) 0% 1%
430 2047 214 1.3% 0.3%
430 4095 495 1 % 0.4%

Length Accuracy on 
LFW 

Mobio Eval 
Female 
(HTER)

Mobio 
Eval Male 
(HTER)

Pretrained CNN 
(OpenFace)

99.22 % 3.94 % 1.15 %

128 97.3 6.00 2.48

256 97.5 5.00 1.35

512 98.8 4.34 1.51

1024 99.12 5.26 1.27

2048 99.00 4.32 1.33

4096 99.00 4.29 1.38

Our goal is to create symmetric keys with at 
least 400-bit entropy. 

3. Plan

Face template
extraction Binarization

Cryptographic
key 

regeneration

6. Binarization

7. Cryptographic key regeneration

8. Conclusion

§ We created and optimized a state-of-the-art face recognition system 
based on publicly available datasets and open-source tools.

§ Innovation in the binarization method.
§ Improvement in the length of the symmetric crypto-biometric keys.
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Enrolment

Key regeneration

Table2 : Biometirc recognition Performance of the binary representations

Table3 : Key regeneration performance


