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What this PhD is about
. Bayesian Inference: model a phenomenon
based on a set of observed data while incorporat-
ing uncertainty in the model parameters.

.Why is it difficult? The context of Big data often
requires complex models, rendering cores quan-
tities in Bayesian Inference intractable (e.g poste-
rior density, predictive distribution).

. In this PhD: our goal is to build novel scalable
Approximated Bayesian Inference algorithms at
the intersection of Monte Carlo (MC) and Varia-
tional Inference (VI) methods to better approxi-
mate the posterior density.

VI according to α: an illustration

Mean-Field approximation with varying values
of α for a toy Bayesian Linear Regression model

First paper [1]
. Proposed algorithm: the (α,Γ)-descent

Algorithm 1: (α,Γ)-descent transition

Iα(µ)(dθ) =
µ(dθ) · Γ(bµ(θ) + κ)

µ(Γ(bµ + κ))

with bµ(θ) =

∫
Y

k(θ, y)f ′α

(
µk(y)

p(y)

)
ν(dy)

Given an initial µ1, (µn)n>1 is defined by

µn+1 = Iα(µn) .

Here, fα is the convex function defined by

fα =


1

α(α−1) [uα − 1− α(u− 1)] , if α ∈ R \ {0, 1} ,
1− u+ u log(u), if α = 1 (fKL),
u− 1− log(u), if α = 0 (rKL).

I Findings:

1. Sufficient conditions for a systematic decrease
in the α-divergence; convergence results/rates.

2. Recovers the Mirror Descent for Γ(v) = e−ηv .

3. Novel algorithm: Power Descent with Γ(v) =
[(α− 1)v + 1]η/1−α.

4. Applicable to Mixture weights optimisation
for any kernel K using MC methods.

5. Empirical benefit of using the Power descent
(see figure on the right).

Second paper [2]
Algorithm 1 optimises λ by decreasing the α-
divergence at each step, while keeping Θ fixed.

What about Θ?
I Findings:

1. Sufficient conditions for a systematic decrease
of the α-divergence:∫

Y

J∑
j=1

λj,n
γnj,α(y)

α− 1
log

(
λj,n+1

λj,n

)
ν(dy) 6 0

∫
Y

J∑
j=1

λj,n
γnj,α(y)

α− 1
log

(
k(θj,n+1, y)

k(θj,n, y)

)
ν(dy) 6 0 .

λ and Θ are updated simultaneously!!!

Second paper [2] continued
2. Valid updates based on the Power Descent for
the mixture weights λ.

3. As for Θ: explicit updates when k is Gaussian
with Gradient Descent (GD) as a special case.

4. Recovers the M-PMC algorithm when α = 0
(Integrated EM).

5. Applicable to Gaussian Mixture Models using
MC methods.

6. Empirical benefits: outperforms the M-PMC
algorithm and GD-based algorithms (see figure
below).

Numerical experiments for [1]

Comparison between the Power Descent and the
Mirror Descent as the dimension grows

Numerical experiments for [2]

Comparison between our approach (UM-PMC)
and existing methods in the literature.
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Conclusion & Perspectives
I Novel framework for mixture models optimi-
sation with theoretical guarantees and numerical
advantages.
I Future work: additional convergence rates,
variance reduction methods, alternative diver-
gence...

Problem statement
. Target: Posterior density of the latent variable y
given the data D:

p(y|D) =
p(y,D)∫

Y
p(y,D)ν(dy)

. Goal in VI: choose a measure of discrepancy D
and an approximating family Q; then find

inf
q∈Q

D(q||p(·|D)) (1)

Typically, D is the forward Kullback-Leibler
(fKL) divergence and Q is a parametric family

Q = {q : y 7→ k(θ, y) : θ ∈ T}

 Problems: (i) posterior variance underestima-
tion due to the fKL (ii) Q is sometimes not large
enough to capture p(·|D) (see figure).
. Our approach of (1): D is the α-divergence Dα

Dα(q||p(·|D)) =

∫
Y

fα

(
q(y)

p(y|D)

)
p(y|D)ν(dy)

and enrich Q by considering either

[1]
{
q : y 7→

∫
T

µ(dθ)k(θ, y) : µ ∈ M

}

[2]

q : y 7→
J∑
j=1

λjk(θj , y) : λ ∈ SJ ,Θ ∈ TJ

 ,

where (λ,Θ) = (λj , θj)16j6J , SJ : simplex of RJ .


