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Introduction

Background: This work deals with the control of an autonomous racecar (Ego Vehicle, EV)

that should perform the fastest lap time on a track, while in presence of an opponent vehicle

(Leading Vehicle, LV).

Method: We propose a Nonlinear Model Predictive Control (NMPC) model under a minimum

time objective, which integrates the opponent’s trajectory as a collision-avoidance constraint.

System Dynamics and Curvilinear Coordinate

The reference line (track’s center line) is parameterized with length s as a curviliner coordinate, in
which:

as in Fig. 1, we define: the linear and angular velocity - vx, vy, and ω; the position and
orientation as the deviation from the reference line - ey and eψ
a dynamic bicycle model is established to capture the vehicle’s dynamics (shown in Eq. (1)) in

which d and δ are the control variables for motor and vehicle steering; FF/R,x/y are the front /

rear side force along / vertical to tire; κ(s) is the local curvature around projection point.

we represent the time t as dependent variable: ddst = 1−ey·κ(s)
vxcos(eψ)−vysin(eψ) and it is a direct

objective for optimisation problem.

the track constraint is a simple interval set, with fixed track width L, the relative position is
simply constrained as: ey ∈ [−L,L].
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where ṡ = vxcos(eψ)−vysin(eψ)
1−ey·κ(s) .

Figure 1. System dynamics.

Shape Approximation and Collision-Avoidance

As shown in Fig. 2, we define an over-approximation of the vehicle’s occupied area and project

it into curvilinear coordinate. The collision-avoidance constraint means no intersection between

the occupied areas of EV and LV, i.e.

[sEV0 − LEVs , sEV0 + LEVs ] × [eEVy0 − LEVe , eEVy0 + LEVe ]
∩[sLV0 − LLVs , sLV0 + LLVs ] × [eLVy0 − LLVe , eLVy0 + LLVe ] = ∅

(2)

We define a mixed-integer form of the above constraints for EV at step i of the prediction horizon
as following configurations: (A) EV is ahead of LV; (B) EV is behind LV; (C) EV is at the left of LV;

(D) EV is at the right of LV, i.e. as written in Eq. (3).

Figure 2. Curvilinear coordinate transformation

(A) sLVi + (Ls)LVi ≤ sEVi − (Ls)EVi ∨ (B) sEVi + (Ls)EVi ≤ sLVi − (Ls)LVi
∨ (C) eyLVi + (Le)LVi ≤ ey

EV
i − (Le)EVi ∨ (D) eyEVi + (Le)EVi ≤ ey

LV
i − (Le)LVi

(3)

We refine them into 4 non-overlapping configurations, by adding to the cases (C) and (D) the

condition that EV is neither totally ahead of LV nor totally behind of LV. Formally written as:

(fA(i) ≤ 0) ∨ (fB(i) ≤ 0)
∨(fC(i) ≤ 0 ∧ (fA(i) > 0 ∧ fB(i) > 0))
∨(fD(i) ≤ 0 ∧ (fA(i) > 0 ∧ fB(i) > 0))

(4)

Using big-M theory, we reduce the number of binary varibale from 4 to 2. In following equation,

a1 = 1 + c1 − c2, a2 = 1 − c1 + c2, a3 = c1 + c2, a4 = 2 − c1 − c2, c1 and c2 are 2 binary variables.{
fA(i) ≤ a1 ·M
fB(i) ≤ a2 ·M


fC(i) ≤ a3 ·M
−fA(i) ≤ a3 ·M
−fB(i) ≤ a3 ·M


fD(i) ≤ a4 ·M
−fA(i) ≤ a4 ·M
−fB(i) ≤ a4 ·M

(5)

If c1 = 0, c2 = 1, the first constraint of Eq. (4) is active and other constraints are relaxed. If
c1 = 1, c2 = 0, the second constraint is active. If c1 = c2 = 0, the third group of constraint is
active. If c1 = c2 = 1, the last group of constraint is active.

Formulation of the Optimisation Problem

Finding a control minimizing the lap time is expressed as an Optimal Control Problem (OCP).

Piecewise constant control parameterization changes a continuous OCP into a Model

Predictive Control (MPC) problem, which can be solved efficiently.

We use a multiple shooting method for an horizon of N control-steps. The resulting sets of

constraints can then be solved by Non-Linear Programming (NLP) optimisation.

We solve this MPC problem by sequentially solving Quadratic Programs (QP) problem based

on an exact Hessian matrix expansion [1].

Combining with the constraint in Eq. (5), we formulate the optimisation problem as

min
ui(s)

tN

s.t. ξ′
i+1 = fdyn(ξi, ui), i = 0, ..., N
ξi ∈ [ξ, ξ], i = 0, ..., N + 1
ui ∈ [u, u], i = 0, ..., N,

(6)

where ξi is the state vector [ey, eψ, vx, vy, ω, t, s, d, δ] and ui is the control vector [∆d,∆δ].

Simulation result

In this work, we use the identification parameters of a 1:43 miniature racecar [2] with the maxi-

mum speed at 1.6m/s. It is potentially possible to implement a similar algorithm with some mod-
ification on the F1Tenth racecar [3] which allows a maximum speed at 20m/s( 70km/h).

Horizon length
# of cases where

collision happens

Average

lap time [s]

Average calculation time

per step before overtaking [ms]

Track 1 15 3 4.942 247.1

30 0 4.899 904.9

Track 2 15 0 10.278 243.5

30 0 10.148 831.9

The above table summarizes the simulation result of head-to-head competition on 2 tracks, from

which we observed the following features: a longer horizon yields better lap time but requires a

higher computation cost; a shorter horizon has the risk of collision.

Figure 3. The trajectory of EV and LV in a typical scenario

A typical example of calculation result for a

given progress point is presented in Fig. 3.

We observed the following behavior in EV’s

prediction horizon. EV plans:

1. to follow LV from step 1 to 10 (2nd

condition in Eq. (4) is active)

2. to overtake LV at the right from step 11

to 19 (4th condition in Eq. (4) is active)

3. to be completely ahead of LV at step 20

(1st condition in Eq. (4) is active)

4. to keep this advantage until step 26, to

keep at the left of LV at the last 4 steps

(3th condition in Eq. (4) is active).

Conclusion and Discussion

The previous result demonstrated the effectiveness of the algorithm.

However, with the current configuration, the average progress time per step is lower than the
calculation time per step. It shows the difficulty of the implementation on a real-world racecar
of the NMPC-based controller with the MIQP method encoding non-collision constraints.
There are several possibilities to solve this problem in the future:
to simplify the decision combinatorics

to explore the problem structure of MIQP method and take the advantage of the multi-core system

On another hand, low-speed car-like robot (such as two-wheel differential-drive service robot),

which allows a relatively slow calculation time, could benefit from this proposed algorithm.
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