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constant C continuous C Riemann-integrable C ‘ Lebesgue—measurable‘

Problem

x(t) = g(u(t)) - h(t, x(t))
x(0) € Ay with u Lebesgue-measurable
u(t)yeld

Method
1. Decomposition h = ht — h~
2. Simpler problem: x(t) = Ah™(t,x(t)) — Bh™ (¢, x(t))
— parametrized by x(0), A and B (constant uncertainties)

3. Compute over-approximation
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Example: Nonlinear

() = —x(£) — x y x(0) =1
{)'(Et)_ Et; (O)y(@u(t) y(0) =2

u(t) € [-1,1]

| Flow_ star
7 CORA

[0 prototype
Exact

Over-approximations of x(t)



Example: Dubins car

X(t) = un(t) cos(z(t)) x(0) = y(0) = 2(0)
y(t) = u1(t)sin(z(t))  with u(t) €[0.9,1]
z(t) = ux(t) up(t) € [0, 1]

1 7 CORA

Flow star

77 prototype
Exact

0.0 0.2 0.4 0.6 08 10

Over-approximations of x(t)

=0

4/6



Conclusion

» Able to handle Lebesgue-measurable uncertainties
» High precision
» Could be apply to stochatic uncertainties
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Thank you for your attention
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