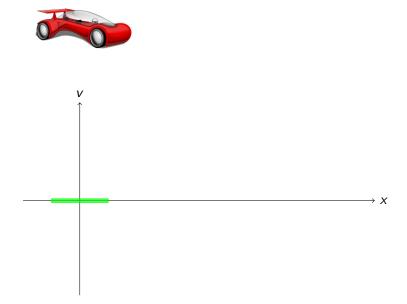
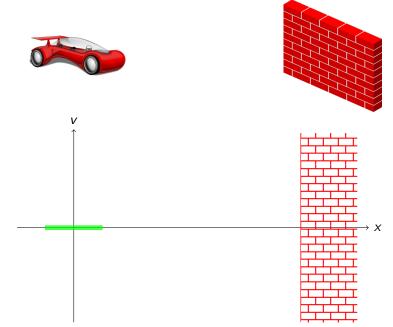
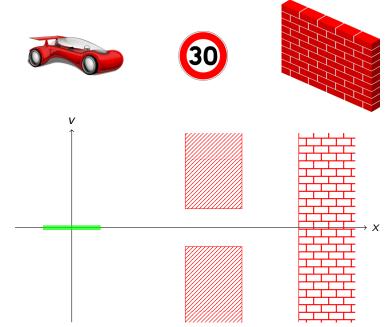
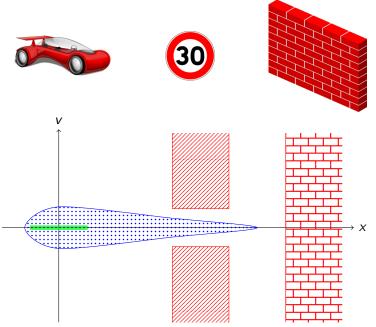
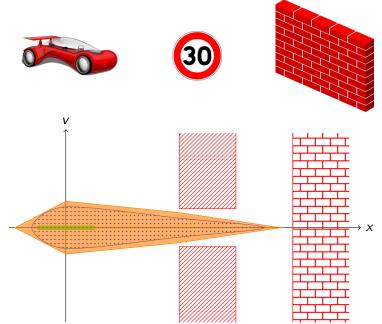
François Bidet, Éric Goubault, Sylvie Putot











Bounded uncertainties $constant \subset continuous \subset Riemann-integrable$

Bounded uncertainties

 $\mathsf{constant} \subset \mathsf{continuous} \subset \mathsf{Riemann\text{-}integrable} \subset \boxed{\mathsf{Lebesgue\text{-}measurable}}$

Bounded uncertainties

 $\mathsf{constant} \subset \mathsf{continuous} \subset \mathsf{Riemann\text{-}integrable} \subset \boxed{\mathsf{Lebesgue\text{-}measurable}}$

Problem

Bounded uncertainties

 $\mathsf{constant} \subset \mathsf{continuous} \subset \mathsf{Riemann\text{-}integrable} \subset \boxed{\mathsf{Lebesgue\text{-}measurable}}$

Problem

$$\begin{cases} \dot{x}(t) = g(u(t)) \cdot h(t, x(t)) \\ x(0) \in \mathcal{X}_0 \\ u(t) \in \mathcal{U} \end{cases}$$
 with u Lebesgue-measurable

Method

Bounded uncertainties

 $\mathsf{constant} \subset \mathsf{continuous} \subset \mathsf{Riemann\text{-}integrable} \subset \boxed{\mathsf{Lebesgue\text{-}measurable}}$

Problem

$$\begin{cases} \dot{x}(t) = g(u(t)) \cdot h(t, x(t)) \\ x(0) \in \mathcal{X}_0 \\ u(t) \in \mathcal{U} \end{cases}$$
 with u Lebesgue-measurable

Method

1. Decomposition $h = h^+ - h^-$

Bounded uncertainties

 $\mathsf{constant} \subset \mathsf{continuous} \subset \mathsf{Riemann\text{-}integrable} \subset \boxed{\mathsf{Lebesgue\text{-}measurable}}$

Problem

$$\begin{cases} \dot{x}(t) = g(u(t)) \cdot h(t, x(t)) \\ x(0) \in \mathcal{X}_0 \\ u(t) \in \mathcal{U} \end{cases}$$
 with u Lebesgue-measurable

Method

- 1. Decomposition $h = h^+ h^-$
- 2. Simpler problem: $\dot{x}(t) = Ah^+(t, x(t)) Bh^-(t, x(t))$ \rightarrow parametrized by x(0), A and B (constant uncertainties)

Bounded uncertainties

 $\mathsf{constant} \subset \mathsf{continuous} \subset \mathsf{Riemann\text{-}integrable} \subset \boxed{\mathsf{Lebesgue\text{-}measurable}}$

Problem

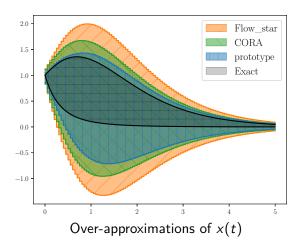
$$\begin{cases} \dot{x}(t) = g(u(t)) \cdot h(t, x(t)) \\ x(0) \in \mathcal{X}_0 \\ u(t) \in \mathcal{U} \end{cases}$$
 with u Lebesgue-measurable

Method

- 1. Decomposition $h = h^+ h^-$
- 2. Simpler problem: $\dot{x}(t) = Ah^+(t, x(t)) Bh^-(t, x(t))$ \rightarrow parametrized by x(0), A and B (constant uncertainties)
- 3. Compute over-approximation

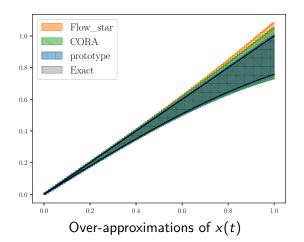
Example: Nonlinear

$$\begin{cases} \dot{x}(t) = -x(t) - x(t)y(t)u(t) \\ \dot{y}(t) = -y(t) \end{cases} \text{ with } \begin{cases} x(0) = 1 \\ y(0) = 2 \\ u(t) \in [-1, 1] \end{cases}$$



Example: Dubins car

$$\begin{cases} \dot{x}(t) = u_1(t)\cos(z(t)) \\ \dot{y}(t) = u_1(t)\sin(z(t)) \\ \dot{z}(t) = u_2(t) \end{cases} \text{ with } \begin{cases} x(0) = y(0) = z(0) = 0 \\ u_1(t) \in [0.9, 1] \\ u_2(t) \in [0, 1] \end{cases}$$



Conclusion

- ► Able to handle Lebesgue-measurable uncertainties
- ► High precision
- Could be apply to stochatic uncertainties

Conclusion

- ► Able to handle Lebesgue-measurable uncertainties
- ► High precision
- Could be apply to stochatic uncertainties

Thank you for your attention

