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Example: Nonlinear
{

ẋ(t) = −x(t) − x(t)y(t)u(t)
ẏ(t) = −y(t)

with











x(0) = 1
y(0) = 2
u(t) ∈ [−1, 1]
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Example: Dubins car










ẋ(t) = u1(t) cos(z(t))
ẏ(t) = u1(t) sin(z(t))
ż(t) = u2(t)

with











x(0) = y(0) = z(0) = 0
u1(t) ∈ [0.9, 1]
u2(t) ∈ [0, 1]
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Conclusion

◮ Able to handle Lebesgue-measurable uncertainties

◮ High precision

◮ Could be apply to stochatic uncertainties
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Thank you for your attention
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