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Introduction
• Safety properties can be proved knowing the set of reachable states
• Computing exact sets of reachable states is often impossible
• We compute an over-approximation: a set guaranteed to contain all

reachable states
• Our method is able to handle a broader class of uncertainties than

most of state-of-the-art tools

Picard iteration
Let ẋ(t) = f(t, x(t)) be an ordinary differential equation with f a contin-
uous function and x(0) = x0 be an initial state.
Given a set-valued function ϕ(t), whose all images are closed, convex and
bounded, such that

x0 +
∫ t

0
f(s, ϕ(s)) ds ⊂ ϕ(t)

then ϕ(t) is an over-approximation of the set of reachable states of the
system at time t: for all solution x, x(t) ∈ ϕ(t).Problem formulation

• We want to compute over-approximations of the set of reachable
states of the initial value problem{

ẋ(t) = g(u(t)) · h(t, x(t))
x(0) = x0 ∈ X0 ⊂ Rn (1)

with u : [0, T ]→ U a Lebesgue-measurable bounded function, where
U is a compact set, g : U → Rn×m and h : R × Rn → Rm two
continuous functions.

• Right-hand side not Riemann-integrable =⇒ most tools produce
non guaranteed approximations

Theory
Let h+ and h− be continuous functions such that h = h+ − h−. An
over-approximation of the initial value problem ẋ(t) = Ah+(t, x(t))−Bh−(t, x(t))

x(0) = x0 ∈ X0
A, B such that ∃uA, uB ∈ U : g(uA) = A and g(uB) = B

for all x0, A, and B, is an over-approximation of the problem 1.
The right-hand side is continuous, so we can apply the Picard itera-
tion to guarantee the over-approximation of the set of reachable states,
parametrized by t, x0, A and B.

Sets representation: Taylor models (TMs)
• triple (D, p, I) with D ⊂ Rk be a domain, p : D → R be a polynomial,

and I ⊂ R be an interval called remainder
• a Taylor model (D, p, I) is an over-approximation of f on D if ∀x ∈
D, f(x) ∈ {p(x) + v | v ∈ I}

• Easy to over-approximate usual operators and easy to implement

Positive decomposition
• Best decompositions of h using TMs minimize ‖h+

i ‖1 + ‖h−
i ‖1

• If h(t, x) ∈ [a, b] with a < 0 < b, the best affine decomposition is

h+
i = b

b− a
h− ab

b− a
and h−

j = a

b− a
h− ab

b− a

• We tried multiple decompositions on the problem ẋ(t) = (0.1−t)u(t)
with x(0) = 0 and u(t) ∈ [−1, 1] and displayed the results below

Decomposition Over-Approximation
(h + 0.1)− 0.1 [−0.040, 0.040]

(0.5h + 0.05)− (0.05− 0.5h) [−0.020, 0.020]
(h + 0.5)2 − (h2 + 0.25) [−0.102, 0.102]
(h + 0.25)2 − (h− 0.25)2 [−0.027, 0.027]

Example: Nonlinear

Simple example with nonlinear dy-
namics:

ẋ(t) = −x(t)− x(t)y(t)u(t)
ẏ(t) = −y(t)
t ∈ [0, 20]
u(t) ∈ [0, 1]
x(0) = 3 0 1 2 3 4 5
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Example: Switching

Simple example with multiple possi-
ble fixed-points:

ẋ(t) = u(t)− x(t)
t ∈ [0, 20]
u(t) ∈ [0, 1]
x(0) = 3
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Example: Dubins car
Variation of the Dubins car model: ẋ(t) = u1(t) cos(z(t))

ẏ(t) = u1(t) sin(z(t))
ż(t) = u2(t)

with

 t ∈ [0, 1]
u1(t) ∈ [0.9, 1]; u2(t) ∈ [0, 1]
x(0) = y(0) = z(0) = 0
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Discussion about examples
Areas CORA Flow* proto exact
Nonlinear 5.956 7.735 4.866 3.576
Switching 23.33 26.81 19.48 19.00
Dubins car 0.114 0.114 0.099 0.086

• Tighter over-approximations of x(t) (cf. table above)
• Loss of dependencies between variables (cf. Dubins car example)
• Handle broader class of uncertainties (Lebesgue-measurable)

Conclusion and future work
• New method to handle Lebesgue-measurable uncertainties
• Could be generalized to stochastic uncertainties (Itô calculus)
• Tight over-approximation on simple examples

=⇒ useful for safety properties proofs
• Could be used with transitions’ abstractions of hybrid automata


