Reachability Analysis with Measurable Time-Varying Uncertainties*

François Bidet, Éric Goubault, Sylvie Putot

LIX, École polytechnique, Institut Polytechnique de Paris

fbidet@lix.polytechnique.fr, goubault@lix.polytechnique.fr, putot@lix.polytechnique.fr

Introduction	Picard iteration
 Safety properties can be proved knowing the set of reachable states Computing exact sets of reachable states is often impossible We compute an over-approximation: a set guaranteed to contain all reachable states Our method is able to handle a broader class of uncertainties than most of state-of-the-art tools 	Let $\dot{x}(t) = f(t, x(t))$ be an ordinary differential equation with f a continuous function and $x(0) = x_0$ be an initial state. Given a set-valued function $\overline{\varphi}(t)$, whose all images are closed, convex and bounded, such that $x_0 + \int_0^t f(s, \overline{\varphi}(s)) ds \subset \overline{\varphi}(t)$
Problem formulation	then $\overline{\varphi}(t)$ is an over-approximation of the set of reachable states of the system at time t: for all solution $x, x(t) \in \overline{\varphi}(t)$.

Proplem formulation

• We want to compute over-approximations of the set of reachable

states of the initial value problem

$$\begin{cases} \dot{x}(t) = g(u(t)) \cdot h(t, x(t)) \\ x(0) = x_0 \in \mathcal{X}_0 \subset \mathbb{R}^n \end{cases}$$
(

with $u: [0,T] \to \mathcal{U}$ a Lebesgue-measurable bounded function, where \mathcal{U} is a compact set, $g: \mathcal{U} \to \mathbb{R}^{n \times m}$ and $h: \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^m$ two continuous functions.

• Right-hand side not Riemann-integrable \implies most tools produce non guaranteed approximations

Theory

Let h^+ and h^- be continuous functions such that $h = h^+ - h^-$. An over-approximation of the initial value problem

 $\dot{x}(t) = Ah^+(t, x(t)) - Bh^-(t, x(t))$ $x(0) = x_0 \in \mathcal{X}_0$ $A, B \text{ such that } \exists u_A, u_B \in \mathcal{U} : g(u_A) = A \text{ and } g(u_B) = B$

for all x_0 , A, and B, is an over-approximation of the problem 1. The right-hand side is continuous, so we can apply the Picard iteration to guarantee the over-approximation of the set of reachable states, parametrized by t, x_0, A and B.

Sets representation: Taylor models (TMs)

- triple (\mathcal{D}, p, I) with $\mathcal{D} \subset \mathbb{R}^k$ be a domain, $p : \mathcal{D} \to \mathbb{R}$ be a polynomial, and $I \subset \mathbb{R}$ be an interval called remainder
- a Taylor model (\mathcal{D}, p, I) is an over-approximation of f on \mathcal{D} if $\forall x \in$ $\mathcal{D}, f(x) \in \{p(x) + v \mid v \in I\}$
- Easy to over-approximate usual operators and easy to implement

Positive decomposition

• Best decompositions of h using TMs minimize $||h_i^+||_1 + ||h_i^-||_1$ • If $h(t, x) \in [a, b]$ with a < 0 < b, the best affine decomposition is

$$h_i^+ = \frac{b}{b-a}h - \frac{ab}{b-a}$$
 and $h_j^- = \frac{a}{b-a}h - \frac{ab}{b-a}$

• We tried multiple decompositions on the problem $\dot{x}(t) = (0.1 - t)u(t)$ with x(0) = 0 and $u(t) \in [-1, 1]$ and displayed the results below

Decomposition	Over-Approximation		
(h+0.1) - 0.1	[-0.040, 0.040]		
(0.5h + 0.05) - (0.05 - 0.5h)	[-0.020, 0.020]		
$(h + 0.5)^2$ $(h^2 + 0.95)$			

Example: Nonlinear

Simple example with nonlinear dynamics:

Example: Switching

Simple example with multiple possible fixed-points:

Example: Dubins car

Variation of the Dubins car model:

 $\dot{x}(t) = u_1(t)\cos(z(t))$ $\dot{y}(t) = u_1(t)\sin(z(t))$ $\dot{z}(t) = u_2(t)$

$t \in [0,1]$ with $\boldsymbol{\zeta} \quad u_1(t) \in [0.9, 1]; \ u_2(t) \in [0, 1]$ x(0) = y(0) = z(0) = 0

Discussion about examples

Areas	CORA	Flow*	proto	exact
Nonlinear	5.956	7.735	4.866	3.576
Switching	23.33	26.81	19.48	19.00
Dubins car	0.114	0.114	0.099	0.086

• Tighter over-approximations of x(t) (cf. table above) • Loss of dependencies between variables (cf. Dubins car example) • Handle broader class of uncertainties (Lebesgue-measurable)

Conclusion and future work

- New method to handle Lebesgue-measurable uncertainties
- Could be generalized to stochastic uncertainties (Itô calculus)
- Tight over-approximation on simple examples \implies useful for safety properties proofs
- Could be used with transitions' abstractions of hybrid automata

*This work has been accepted for publication as "Reachability Analysis of Generalized Input-Affine Systems with Bounded Measurable Time-varying Uncertainties" in the IEEE Control Systems Letters (L-CSS).