

Spatio-Temporal Wireless D2D Network With Beamforming

Yibo QUAN¹², Jean-Marc KÉLIF² and Marceau COUPECHOUX¹ ¹LTCI, Télécom Paris, Institut Polytechnique de Paris, 91120 Palaiseau, France ²Orange Labs, 92320, Châtillon, France

Introduction

We consider a dynamic device-to-device (D2D) communication model where transmitters and receivers adopt beamforming (BF). A continuous spatio-temporal model for the wireless network is analyzed, which combines a spatial point process and a dynamic birth-death process [1]. We model BF by using a uniform linear array (ULA) and derive an analytical stability condition of such a network. We show that the critical arrival rate

Antenna Types	Antenna gain	
	G_{max}	G_{min}
T_{χ}	2 <i>n</i>	ho
R_{x}	2 <i>n</i> ²	n ho

Note T_{χ} and R_{χ} denote the transmitters and the receivers.

Critical Arrival Rate

increases with the number of antennas at the transmitter and the receiver.

Spatial Birth-Death Process

- D2D device pairs live is 2-D Euclidean square plane S.
- The appearing positions of the receivers are i.i.d. uniformly distributed in the plane S.
- The transmitter devices are uniformly distributed on the circles centered at the receivers of radius T.

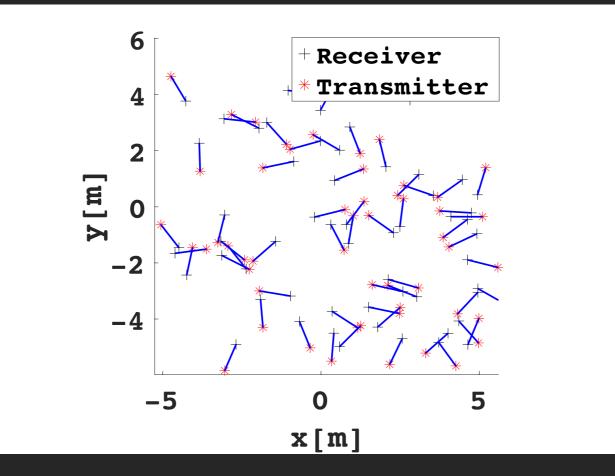


Figure 1. Distribution of device transmitter-receiver pairs.

Arrival time instants of devices: Poisson process with arrival rate $\lambda |S|$.

Definition (*Critical arrival rate*): The critical arrival rate λ_c is defined as the threshold of arrival rate such that, the spatial birth-death process Φ_t is stable if and only if $\lambda < \lambda_c$.

we define the critical arrival rate under the BF paradigm expressed as follows :

$$\lambda_c^{BF}(n) = \frac{4n^3 B \ l(T)}{\ln(2)La} \mathbb{E}[G(n)]$$

Where *B* denotes the bandwidth, *L* denotes the mean file size,

 $l(\cdot)$ denotes the path-gain function, and $a = \int_{S} l(x) dx$. Let $p = \frac{\omega}{\pi}$, the mean of antenna power gain is: $\mathbb{E}[G(n)] = 4n^{3}p^{2} + 4n^{2}\rho p(1-p) + n\rho^{2}(1-p)^{2}$

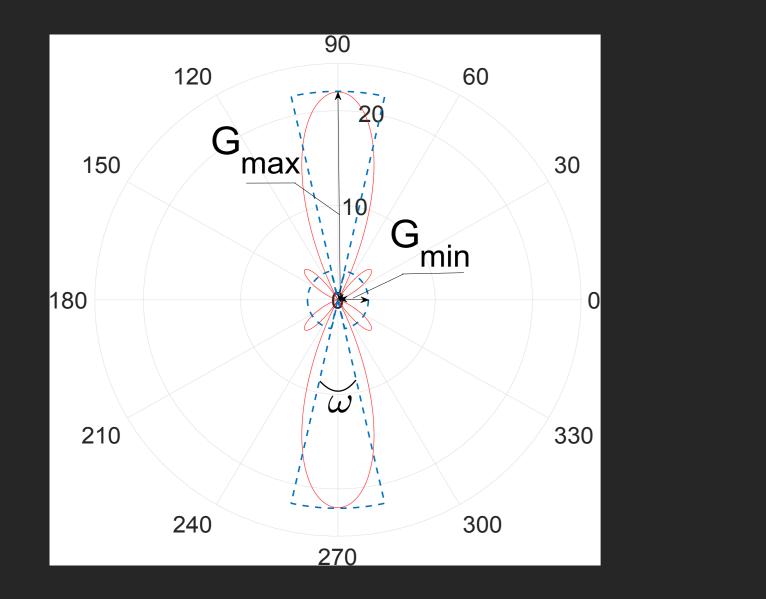
Theorem (*Stability region*) : Assuming the approximated ULA BF model with n antenna elements, if $\lambda > \lambda_c^{BF}(n)$, the spatial birth-death process Φ_t admits no stationary regime.

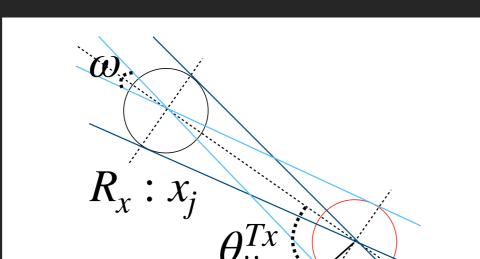
Simulation Results

At each time instant *t*, the positions of pairs are modeled as a spatial point process Φ_t . $\Phi_t(S)$ denotes the number of pairs in S.

Once a pair of device arrives, it starts to transfer a file of random file size that follows an exponential distribution.

Beamforming Model





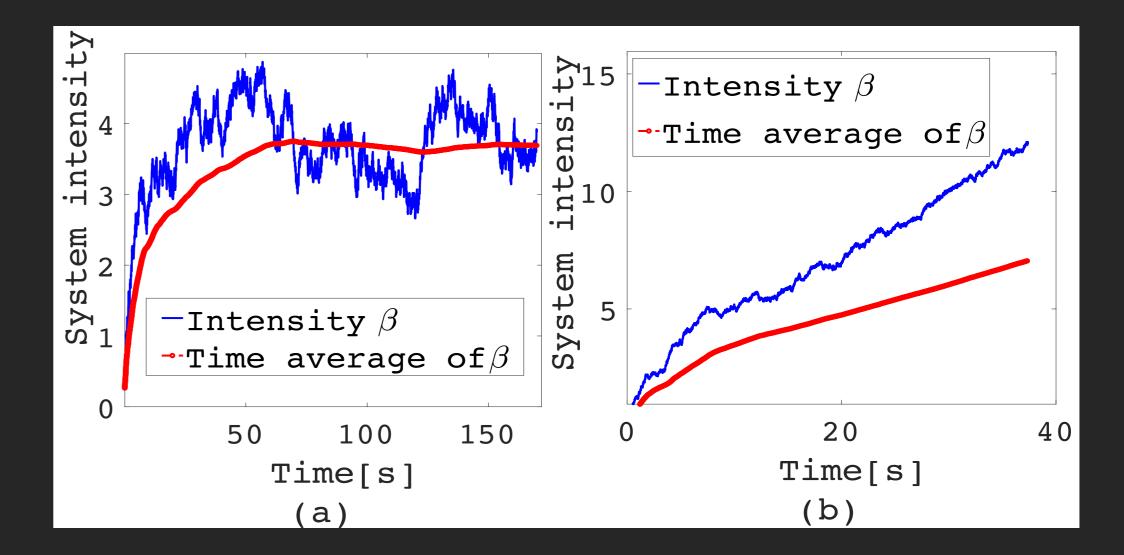


Figure 4. Intensity $\beta_t = \Phi_t(S)/|S|$, (a). $\lambda < \lambda_c^{BF}$, (b). $\lambda > \lambda_c^{BF}$.

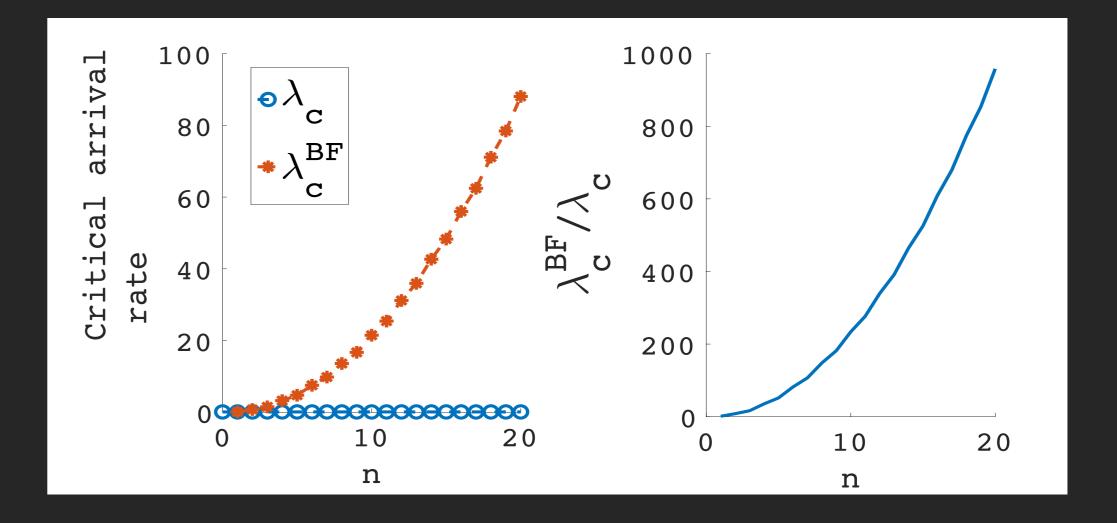


Figure 2. Uniform Linear Array beamforming (ULA BF) model (solid line) and approximated ULA BF model (dotted line).

 ω **3(1)** K_{x} : X_{y} $T_x : y_i$

Figure 3. Schema of interference between pairs with BF. For each pair, boreside directions of the antenna arrays are aligned.

n : Number of antenna elements. • G_{max} : Main beam of gain. G_{min} : Side beam of gain. • ω : Half power beam width (HPBW).

Figure 5. Critical arrival rate λ_c without BF and λ_c^{BF} with BF.

Conclusion

We present an extension of the spatial birth-death wireless network model proposed by Sankararaman and Baccelli to the scenario with BF, and provide an explicit expression of the critical arrival rate as a function of the number of antenna elements. Theoretical and numerical results show that BF expands significantly the stability region.

Reference

[1] Abishek Sankararaman and Francois Baccelli, "Spatial birth–death wireless networks," IEEE Transactions on Information Theory, (6):3964–3982, June 2017.