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Motivation: need for structured data representations

Goal of ML: infer from a set of examples, the relationship between
some explanatory variables x, and a target output y

A representation: set of features characterizing the observations
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How to (automatically) learn structured data representations?



The Kernel Autoencoder: building blocks

How to deal with non-vectorial data in ML? Kernel Methods
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How to learn representations of vectorial data in ML? Autoencoders
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The Kernel Autoencoder [Laforgue et al., 2019]
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The Kernel Autoencoder: results

On the theoretical side:
= Connection to Kernel PCA [Schélkopf et al., 1997]
= Generalization guarantees through vectorial Rademacher complexities
= Representer Theorem and optimization procedure

On the practical side:
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Robust losses in vwv-RKHS: motivations

Kernel Autoencoder.
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Robust losses in vwv-RKHS: results

On the theoretical side:
= Double Representer Theorem: coeffs are linear comb. of the outputs
= The dual optimization problems are well known

= Algorithmic stability analysis

On the practical side:
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Conclusion

1. The Kernel Autoencoder allows to extract vectorial representation
from structured data

2. Using more complex loss functions is possible and can bring
robustness

3. Robustness and reliability can also be achieved by MoM-ifying or

debiasing the ERM criterion

Thanks to: Florence d'Alché-Buc, Stephan Clémencon, Alex Lambert,
Luc Brogat-Motte, Kevni Massias



