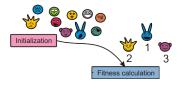
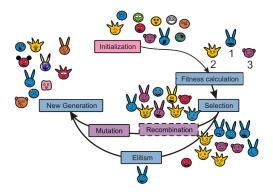
New Methods for Tight Analysis of Population-based Evolutionary Algorithms

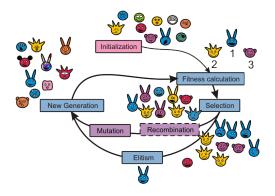
Denis Antipov

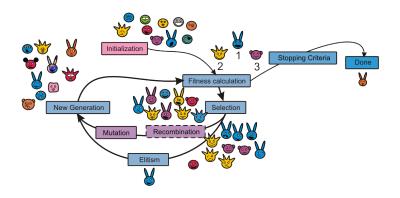
ITMO University, Saint Petersburg, Russia Laboratoire d'Informatique (LIX), École Polytechnique, Palaiseau, France

Supervisors: Maxim Buzdalov and Benjamin Doerr


5 November 2020


Evolutionary Algorithms (EAs)


EAs are random search heuristics which are based on the concepts of the natural evolution:


- Mutation
- Crossover
- Selection
- Populations

Theory and Practice

Practice:

- Can solve hard problems with EAs
- Needs some advice on how to tailor an algorithm for a problem

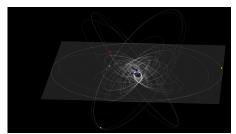
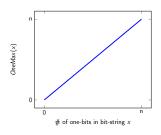



Illustration of the winner of GTOC 8 contest (image source: https://www.esa.int)

Theory:

- Cannot analyse complicated problems
- ► Can give some valuable advice based on the analysis of easy problems

Goals of Theoretical Studies

- Understand working principles of EAs
- ► Improve existing EAs
- ► Propose new effective EAs

Goals of Theoretical Studies

- Understand working principles of EAs
- ► Improve existing EAs
- ► Propose new effective EAs

The main tool of the theory is the runtime analysis via mathematical means

The Focus of the Thesis

We aim at the better understanding of the population-based EAs

- Complicated stochastic processes behind them
 - Lack of tools for their analysis
- Only few theoretical results existed
- Subject of great interest for practitioners

New analysis methods

- ► The new method of the complete trees
- ► The new method for the analysis of no-drift processes
- ► Method for the precise analysis on plateaus
- New additive drift theorem with tail bounds

New analysis methods

- ► The new method of the complete trees
- ► The new method for the analysis of no-drift processes
- ► Method for the precise analysis on plateaus
- ▶ New additive drift theorem with tail bounds

New population-based algorithm

▶ The fast $(1 + (\lambda, \lambda))$ GA

New analysis methods

- ► The new method of the complete trees
- ► The new method for the analysis of no-drift processes
- ► Method for the precise analysis on plateaus
- ▶ New additive drift theorem with tail bounds

New population-based algorithm

▶ The fast $(1 + (\lambda, \lambda))$ GA

New theoretical results

Recommendations on how to set up parameters of EAs

New analysis methods

- ► The new method of the complete trees
- ► The new method for the analysis of no-drift processes
- ► Method for the precise analysis on plateaus
- ▶ New additive drift theorem with tail bounds

New population-based algorithm

▶ The fast $(1 + (\lambda, \lambda))$ GA

New theoretical results

Recommendations on how to set up parameters of EAs

Parameters and Performance

Rally cars have multiple parameters which can be adjusted

- ► Breaks balance
- ► Transmission speed ranges
- Tires
- **.**..

Picture source: https://toyotagazooracing.com/wrc/

Question: how to set the parameters for the best performance?

Recomendations from the Thesis Results

Static parameters choices

- Population size for the $(\mu + \lambda)$ EA: $\mu = O(\log(n))$ and $\lambda = O(\mu)$
- Population size for the (μ, λ) EA: $\mu \approx e\lambda$ and $\mu = \Omega(n^{3/4})$.
- ▶ When traversing plateaus of radius k: mutation rate should be $\frac{k}{en}$
- For the $(1+(\lambda,\lambda))$ GA on Jump_k : non-standard parameter setting $p=c=\sqrt{\frac{k}{n}}$ and $\lambda=\sqrt{\frac{n}{k}}^k$.

Recomendations from the Thesis Results

Static parameters choices

- Population size for the $(\mu + \lambda)$ EA: $\mu = O(\log(n))$ and $\lambda = O(\mu)$
- Population size for the (μ, λ) EA: $\mu \approx e\lambda$ and $\mu = \Omega(n^{3/4})$.
- ▶ When traversing plateaus of radius k: mutation rate should be $\frac{k}{en}$
- ▶ For the $(1 + (\lambda, \lambda))$ GA on $Jump_k$: non-standard parameter setting $p = c = \sqrt{\frac{k}{n}}$ and $\lambda = \sqrt{\frac{n}{k}}^k$.

Dynamic parameters choices

- We can effectively choose parameters randomly from a specific distribution (with proper scaling)
- ▶ After the thesis: we can do it with multiple parameters simultaneously

Summary

- ► In the thesis we proposed several new analysis methods
- With them we obtained some recommendations for the practical use of EAs
- ► We also proposed a new algorithm with the dynamic parameters choices and showed its efficiency on multiple problems

Summary

- ▶ In the thesis we proposed several new analysis methods
- With them we obtained some recommendations for the practical use of EAs
- ► We also proposed a new algorithm with the dynamic parameters choices and showed its efficiency on multiple problems

Thank you!