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What this PhD is about

Paris

> Bayesian Inference:

model a phenomenon

based on a set of observed data while incorporat-
ing uncertainty in the model parameters.

> Why is it difficult? The context of Big data often

requires complex models, rendering cores quan-
tities in Bayesian Inference intractable (e.g poste-
rior density, predictive distribution).

> In this PhD: our goal is to build novel scalable
Approximated Bayesian Inference algorithms at
the intersection of Monte Carlo (MC) and Varia-
tional Inference (VI) methods to better approxi-
mate the posterior density.

Problem statement

> Target: Posterior density of the latent variable y
given the data D:

~ ply,D)
PlyID) = Jy p(y, D)v(dy)

> Goal in VI: choose a measure of discrepancy D
and an approximating family Q; then find

inf D(q|p(-|D)) (1)

Typically, D is the forward Kullback-Leibler
(tKL) divergence and Q is a parametric family

Q={q:y—k(0,y) : 0T}

~+ Problems: (i) posterior variance underestima-
tion due to the tKL (i1) Q is sometimes not large
enough to capture p(-|D) (see figure).

> Qur approach of (1): D is the a-divergence D,

Da(qllp(:|D)) = /on‘ <pzjy(ff)>)

and enrich Q by considering either

> p(y|D)v(dy)

(

[1] <q:yH/Tu(d9)k(6’,y) = MGM}

J
21 Sq:iym ) Nk(fj,y) : A€S,0eT ),
j=1

where (A,0) = (\;,0,)1<;<J, Sy: simplex of R”.
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VI according to a: an illustration
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Mean-Field approximation with varying values
of a for a toy Bayesian Linear Regression model

First paper [1]

> Proposed algorithm: the (o, I')-descent

Algorithm 1: (o, I')-descent transition
dg) - I'(b,(0) + k)
p(I'(by + K))

k(0,y)fq (ﬁ;?) v(dy)

Given an initial p1, (fn )n>1 is defined by

To(u)(d6) = ™

with b, (0) = /

Y

Mn+1 = Ioz(:un) :

Here, f,, is the convex function defined by

L[y —1—a(u—1)],

ifa e R\ {0,1},

Second paper [2]

a(a—1)
Ja = 1—u+ulog(u), if « = 1 (fKL),
u— 1 —log(u), if @ = 0 (rKL).
» Findings:

1. Sufficient conditions for a systematic decrease
in the a-divergence; convergence results/rates.

2. Recovers the Mirror Descent for I'(v) = e™"".

3. Novel algorithm: Power Descent with I'(v) =
(0w — 1)v 4 1]/ 1=,

4. Applicable to Mixture weights optimisation
for any kernel K using MC methods.

5. Empirical benefit of using the Power descent
(see tigure on the right).

Numerical experiments for [1]
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Comparison between the Power Descent and the
Mirror Descent as the dimension grows

Algorithm 1 optimises A by decreasing the o-

divergence at each step, while keeping © fixed.

What about ©?
» Findings:

1. Sufficient conditions for a systematic decrease
of the a-divergence:

J
/ynoz(y) A 1,10
/Z)\Jan OJ;_l lOg( §\+1>V(dy)<0
Y j=1 J,T

J
iy —L log( LT v(dy) < 0.
/Y; a1 k(0jn,y) (dy)

A and © are updated simultaneously!!!
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Second paper [2] continued

2. Valid updates based on the Power Descent for
the mixture weights A.

3. As for O: explicit updates when £ is Gaussian
with Gradient Descent (GD) as a special case.

4. Recovers the M-PMC algorithm when a@ = 0
(Integrated EM).

5. Applicable to Gaussian Mixture Models using
MC methods.

6. Empirical benefits: outperforms the M-PMC
algorithm and GD-based algorithms (see figure
below).

Numerical experiments for [2]
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Comparison between our approach (UM-PMC)
and existing methods in the literature.

Conclusion & Perspectives

» Novel framework for mixture models optimi-
sation with theoretical guarantees and numerical
advantages.

» Future work: additional convergence rates,
variance reduction methods, alternative diver-
gence...
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