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Platforms that support online commentary, from social networks to news sites, are increasingly Let X7 and X be the “toxic” and “civil” non-parallel copora. Let X = X7 U X Quantitative evaluation

leveraging machine learning to assist their moderation efforts. But this process does not typically

provide feedback to the author that would help them contribute according to the community Goal: We aim at learning in a self-supervised setting, a mapping fg s. t.

guidelines. This is prohibitively time-consuming for human moderators to do, and computational V(z,a) € X x{“civil’, “toxic"}, y = fg(z, a) is a text: ?Ode.l Accurac(:)y;/(ACC) 1 Perplex{u)té(PPL) 1 self—sumula{géo(/self—SIM) 0 Geom%tggg/lean A
approaches are still nascent. This work focuses on models that can help suggest rephrasings of R;)rfgo'%pgitv” 10000/ o 50 O; a1
. o o o . . . . . . . . 0 . . 0 .
toxic comments in a more CIYI| manner. Inspired by recent progress in unpaired sequence-to- 1. Satistying the destination attribute a, Human 82 0% 09 73 8% 0.404
sequence tasks, a self-supervised learning model is introduced, called CAE-T5. 2. Fluent in English, Cross Alignment 04 0% 118 3849 0313
3. Preserving the meaning of z “as much as possible”. Input Erasure (BERT) 66.8% /-2 22.6% 0.401
- _ - Style Transfomer (Conditional) 97.8% 47 .2 68.3% 0.242
2Jp)i Ruritania Daily News e Like Page Style Transfomer (Multi-class) 98.8% 64.0 67.9% 0.219
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CAE-T5: We fine-tuned a pre-trained T5 [6] bi-transformer with a AT 7>0% >-2 70.0% 0466
Brealflng News: R””ta”_'?‘ will close its bars for at least one month starting Conditional Auto-Encoder objective Table 1. Automatic evaluation of different models trained and evaluated on the processed Civil Comments dataset.
on Friday as the authorities try to stem a surge of new COVID-19 cases. ACC, PPL and self-SIM are measured with pre-trained models, repsectively BERT [3], GPT-2 [5] and USE [2].
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A A Model Attribute transfer 1 | Fluency 1 | Content preservation 1| Success rate 1| Overall 1
ke comment Share Cross Alignment 2.98 2.32 1.89 6 % 1.81
_ _, gDense [HLMHead] Input Erasure (BERT) 2.77 2.39 2.20 6 % 1.89
' A ' Alice . Your comment could be rephrased Style Transfomer (Condiﬁonal) 2.91 2.36 2.08 5% 1.8/
Bars should be closed for the next 10 months. There's no need for this |' iE a_:.lmm civil mannet:_; k . T T - Style Transfomer (Multi-class) 293 249 210 59 193
back and forth. It's not like you can't drink at home. "Alice besides customers, | think you
; 0OD#% 20 should consider that business QE GD CAE-TS 2.72 3.06 2.63 13% 2.52
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P Unitransformer » T T - Unitransformer Table 2. Human evaluation of different models trained and evaluated on the processed Civil Comments dataset.
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Figure 1. Mock-up showing how Machine Learning could be applied to nudge healthier conversations online. stop being ignorant and lazy and try reading a bit about it. | try reading and be a little more informed about it before
Figure 3. Illustration of the training procedure. Denoising Auto-Encoder: The bi-transformer [/] encodes the - - . you .try to make a comment. |
_ _ corrupted input text n(z) in a latent variable z that is then decoded conditioned on the source attribute a(x) this is absolutely the most idiotic post i have ever read on th!s is absolutely the most important thing i have read on
Datasets used for self-supervised attribute transfer with the objective of minimizing the cross entropy between z and the generated text #. n masks and replace all levels. | | this thread over the years. | |
tokens randomly [3]. Conditioning on the attribute a is done with control codes [4]: v(a, ) prepends to = the trump may be a moron, but clinton is a moron as well. trump may be a clinton supporter, but clinton is a trump
Golden annotated pairs are more expensive and difficult to get than monolingual corpora anno- control code corresponding to attribute a. - e f supporter as W?!- - f
tated in attribute, therefore we opted for a setting where learning is self-supervised. shoot me in the head It you didn't vote for trump. MMVOU dntvote for  trump.
’'m Nno vote
50% of teachers don't have any f*cks to give. 50% of teachers don't have M
= Civil Corpus .
P @ Toxic Corpus Table 3. Examples of automatically transferred test sentences by our system, valid rewriting, and highlighted flaws
facTaniusS“: which money free is going to pay| | o0 they need to do what it takes to - failure in attribute transfer or fluency, supereregation, posi ersal, and hallgetration.
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the head. I ;“3'5 Iresponsible 1o publs 15 Figure 4. Cycle Consistency: The input z is pseudo-transferred with attribute a(x) with auto-regressive (AR)
garbage. decoding because we do not know the ground-truth y. The generated output g is then back-transferred to the
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