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Shape Analysis
I Design algorithms to analyse shapes : classification, detection,

denoising, reconstruction, synthesis ...
I shapes comes from different acquisition devices & modeling

tools.
I Different formats: voxels, polygon meshes, point clouds.
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New challenges, geometric deep learning

I Applying deep learning techniques to shape analysis is
challenging.

I Unlike images, shapes comes in various formats and don’t
have regular (fixed) structure.

I Learn variable domains instead of variable signals on a fixed
domain.
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Plan

1. Topological Function Optimization for Continuous Shape
Matching.
Adrien Poulenard, Primoz Skraba, Maks Ovsjanikov.
Symposium on Geometry Processing (SGP) 2018.

2. Multi Directional Geodesic Neural Networks via
Equivariant Convolution.
Adrien Poulenard, Maks Ovsjanikov.
SIGGRAPH Asia 2018.

3. Effective Rotation-Invariant Point CNN with Spherical
Harmonics kernels.
Adrien Poulenard, Marie-Julie Rakotosaona, Yann Ponty,
Maks Ovsjanikov.
International Conference on 3D Vision (3DV) 2019.
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Part I

Topological Function Optimization for
Continuous Shape Matching
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The functional map setting

A pointwise map between two shapes T : N →M

Induces a linear functional correspondence by pull back1

TF (f ) := g where g := f ◦ T .

1Ovsjanikov et al. Functional maps: a flexible representation of maps
between shapes, TOG, 2012.
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Problem: Functional maps tend to produce discontinuous
correspondences

Transfer of indicator function via functional map (left). Texture
transfer via point-to-point map obtained from functional map

(right).
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Intuition
I We want the image g := ΦNCΦ+

Mf of any unimodal function
f :M→ R to be unimodal.

I We optimize C to remove least prominent maxima from g .
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Where gopt is the resulting function after optimizing C.
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Removing least prominent modes

Pers(g) being differentiable w.r.t. g it can be optimized by
continuous optimization techniques. We can remove least
prominent modes of a function g by optimising g to minimise
Pers(g).
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Improving functional maps
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Part II

Multi Directional Geodesic Neural Networks via
Equivariant Convolution
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Problem setting
We would like to solve problems like classification, segmentation
and matching, on shapes given as triangle meshes by using learning
methods.
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Problem setting

The most successful learning techniques such as CNNs are not
adapted to 3D shapes because they don’t have global canonical
coordinate systems.
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Overview of Geodesic Convolution

The GCNN, (Boscaini et al., 2015) approach uses local polar
coordinates induced by exponential maps to compare a signal on
the surface to a kernel by mapping them on the tangent plane at
every point.

GCNN pipeline
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Local ambiguity
Let f : X → R, Problem: Defining convolution by 〈f ◦ expx , kx ,u〉L2
is ambiguous as it depends on arbitrary u ∈ TxX .

GCNN pipeline
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How to resolve ambiguity ?

f � k(x) := max
u
σ(〈f ◦ expx , kx ,u〉L2)

Geodesic Convolutional Neural Network (GCNN) architecture using
angular max pooling. Problem: We lose directional information by
taking the maximum response over direction u.

GCNN pipeline
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Our approach

I Keep all responses 〈f ◦ expx , kx ,u〉L2 for all u ∈ TxX .

I Work with directional functions ϕ(x , u) depending on point x
and direction u ∈ TxX

I Define a new ”(multi)-directional convolution” operator
taking a directional function ϕ and the same kernel k
producing a new directional function ϕ ? k over X .
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Shape segmentation
Segmentation on the human body dataset introduced in
Convolutional Neural Networks on Surfaces via Seamless Toric
Covers (Maron et al., 2017). The dataset consists of 370 train
shapes and 18 test shapes. Goal: Predict part label of vertices.

Human shapes segmentation using 3D coordinates as input GCNN
(Boscaini et al., 2015), MDGCNN (ours).
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Part III

Effective Rotation-invariant Point CNN with
Spherical Harmonics kernels
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Problem setting
I Many datasets are aligned (canonical pose).
I Networks trained on aligned data cannot generalise to

arbitrary poses.
I Require data augmentation by random rotations during

training, generalisation gap.
I Instead we propose a rotation invariant design.
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Our approach

Rotation invariant convolution kernels basis based on spherical
harmonics Y`m:

κr`m(x) := exp

(
−
|‖x‖2 − ρ r

nR−1 |
2

2σ2

)
︸ ︷︷ ︸

radial comp

Y`m

(
x

‖x‖2

)
︸ ︷︷ ︸
directional comp
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Segmentation

Example of RNA molecule segmentation:
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Thank you !
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