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in June 1925 Heisenberg had hay fever



in Helgoland he apparently had an epiphany



the story goes that he invented matrix mechanics



. . . but some say he invented a convolution algebra

[Connes: Noncommutative Geometry]



“In Göttingen glauben sie daran (ich nicht).”



so what is convolution?



Group Algebras

[Lang: Algebra]

this generalises to groupoids



Monoid Algebras

[Lang: Algebra]

and this to categories



Convolution

(f ∗ g)(x) =
∑
x=yz

f (y)g(z)

but why should computer scientists care?



Weighted Languages

(f ∗ g)(x) =
∑
x=y ·z

f (y) · g(z)

f , g : Σ∗ → S are formal power series

S is semiring, words are finitely decomposable

language theory à la Schützenberger



Languages

(f ∗ g)(x) =
∑
x=y ·z

f (y) ∧ g(z)

f , g : Σ∗ → 2

S is semiring, words are finitely decomposable

convolution is language product



Matrices

(f ∗ g)(i , j) =
∑
k

f (i , k) · g(k , j)

f , g : I × I → R

(i , j) = (i , k) · (l , j) if k = l (pair groupoid)

convolution is matrix product



Relations

(f ∗ g)(i , j) =
∨
k

f (i , k) ∧ g(k , j)

f , g : I × I → 2

convolution is relational composition



Fuzzy Relations

(f ∗ g)(i , j) =
∨
k

f (i , k) · g(k , j)

f , g : I × I → Q for quantale Q

fuzzy logic à la Goguen



Incidence Algebras

(f ∗ g)(i , j) =
∑
k

f (i , k) · g(k , j)

f , g : (I ,≤)→ R for locally finite poset category P

(i , j) = (i , k) · (l , j) if k = l

(i , j) means i ≤ j

combinatorics à la Rota



Interval Temporal Logics

(f ∗ g)(i , j) =
∨
k

f (i , k) ∧ g(k , j)

f , g : (I ,≤)→ 2 for linear poset category (I ,≤)

convolution is chop modality



Separation Logic

(f ∗ g)(η) =
∨

η=η′⊕η′′
f (η′) ∧ g(η′′)

f , g : (Loc ⇀ Val)→ 2

η ⊕ η′ = η ∪ η′ if dom(η) ∩ dom(η′) = ∅
heaplets form partial abelian monoid (with single unit)

convolution is separating conjunction



Lambek Calculus

(f ∗ g)(x) =
∨

R(x,y ,z)

f (y) ∧ g(z)

f , g : X → 2

R(x , y , z) ⊆ X × X × X is ternary Kripke frame

convolution is binary modality



Summary

convolution carries algebraic structure in each example

typically:

if (X ,R) is a relational structure and A a suitable algebra
then convolution algebra AX forms same type of algebra,
its composition is ∗

we are repeating similar constructions!

can we unify/explain?



Relational Convolution

(f ∗ g)(x) =
∨

R(x,y ,z)

f (y) · g(z)

f , g : X → Q

R ⊆ X × X × X

quantale (Q,≤, ·, 1):

. (Q,≤) is complete lattice

. (Q, ·, 1) is monoid

. composition preserves sups in both arguments



Convolution as a Binary Modality

QX is complete lattice

2X is even complete atomic boolean algebra

convolution ∗ is a binary modality on QX or 2X

R is the corresponding/dual ternary Kripke frame

X and 2X are related by Jónsson-Tarki duality
for boolean algebras with operators

what are the correspondences?



Modal Correspondence Triangle

X Q

QX



Ternary Relations vs Multioperations

P(X × X × X ) ∼= X → X → X → 2 ∼= X × X → PX

ternary relations are multioperations X × X → PX :

R(x , y , z)⇔ x ∈ y � z

we lift to � : PX × PX → PX

A� B =
⋃
{x � y | x ∈ A, y ∈ B}



`r -Multisemigroups

(X ,�, `, r) is an `r -multsemigroup if

◦ x � (y � z) = (x � y)� z

◦ x � y 6= ∅ ⇒ r(x) = `(y) and `(x)� x = {x} = x � r(x)

it is a partial `r -semigroup if |x � y | ≤ 1

it is local if x � y 6= ∅ ⇔ r(x) = `(y)

in pair groupoid

◦ (i , j)� ((j , k)� (k, l)) = {(i , l)} = ((i , j)� (j , k))� (k, l)

◦ `(i , j) = (i , i), r(i , j) = (j , j)

◦ (i , j)� (k, l) 6= ∅ ⇔ r(i , j) = `(k , l)

all our examples are based on `r -multisemigroups



`r -Multisemigroups

local partial `r -sgs are precisely (small object-free) categories

a groupoid is local partial `r -sg X in which each x ∈ X has inverse x−1

with x � x−1 = {`(x)} and x−1 � x = {r(x)}

in pair groupoid (i , j)−1 = (j , i)



Correspondences

if X is an `r -msg and Q a quantale, then QX is a quantale with

idE (x) =

{
1 if x ∈ E

⊥ otherwise
where E = {x | `(x) = x}

if QX , Q are quantales and 1 6= ⊥ in Q, then X is an `r -msg

if QX is a quantale and X an `r -msg “with enough elements”,
then Q is a quantale



Finite Decomposability

an `r -msg is finitely decomposable if the following fibre is finite

�−1(x) = {(y , z) | x ∈ y � z}

quantales can then be replaced by semirings

the correspondences still hold



Further Examples

path categories over digraphs s, t : E → V form local partial `r -sgs

◦ paths are (v1, e1, v2, . . . , vn−1, en−1, vn) : v1 → vn

◦ � glues paths at their ends

they lift to path quantales

path cats over one vertex and n arrows give us words/weighted languages

heaplets are non-local partial `r -sgs
they lift to quantitative assertion quantales of separation logic

shuffle of words is proper local `r -mgs
it lifts to weighted shuffle quantales/semirings

paths f : [0, 1]→ X in topology yield local partial `r -magma
it lifts only to prequantale



Extension: Quantitative Concurrent Quantales

a concurrent quantale is formed by quantales (Q,≤, ·, 1), (Q,≤, ‖, 1)
that satisfy

(w ‖ x) · (y ‖ z) ≤ (w · y) ‖ (x · z)

an interchange `r -msg is formed by “`r -msgs” (X ,�, 1), (X ,⊗, 1)
that satisfy

(w ⊗ x)� (y ⊗ z) ⊆ (w � y)⊗ (x � z)

we get the usual correspondence triangle

examples are weighted shuffle and graph/pomset languages



Extension: Quantitative Modal Quantales

a modal quantale is a quantale with comain/codomain maps satisfying

d(x) · x = x d(x · y) = d(x · d(y)) d(x) ≤ 1

d(⊥) = ⊥ d(x ∨ y) = d(x) ∨ d(y)

opposite axioms for r and d ◦ r = r , r ◦ d = d

modal quantales are algebraic relatives of dynamic logics
(|x〉d(y) = d(x · d(y)) etc, boxes are upper adjoints of diamonds)

we get the usual correspondence triangle

◦ D(f )(x) =
∨

y d(f (y)) · δ`(y)(x) and R =
∨

y f (r(y)) · δr(y)(x)

◦ ` lifts to D and r to R

examples are quantitative dynamic logics over categories and beyond



Extension: Girard Quantales

an effect algebra is a partial `r -sg (X ,⊕, 0) with orthosupplement
satisfying

◦ x ⊕ x⊥ = 0⊥

◦ x ⊕ 0⊥ 6= ∅ implies x = 0

a commutative Girard quantale is quantale Q with dualising element d
satisfying x\d\d = x for all x ∈ Q

there is corresponding pair for X and PX with ∆ = X − {0⊥}

this links algebras of effects in quantum mechanics with
phase semantics of linear logic



. . . which brings us back to physics!




