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in June 1925 Heisenberg had hay fever




in Helgoland he apparently had an epiphany

Uber quantentheoretische Umdeutung
kinematischer und mechanischer Beziehungen.
Von W. Heisenberg in Gottingen.
(Eingegangen am 29. Juli 1925.)
Zur Quantenmechanik,
Von M. Born und P, Jordan in Géttinigen,
(Eingegangen am 27. September 1925.)

Zur Quantenmechanik. II.
Von M. Born, W. Heisenberg und P. Jordan in Gottingen.
(Eingegangen am 16. November 1925.)



the story goes that he invented matrix mechanics

Sei z(t) durch U, y(f) durch B charakterisiert, so ergibt sich als
Darstellung von z (). y (f): Klassisch:

+ oo
@19 ("’) - _Ea As (”‘) $ﬁ—a (n).
Quantentheoretisch:
+ oo
Cmyn—pB) = >eAmn —ou) B — an — f).

Wihrend klassisch z (f) . y (t) stets gleich y (?) z () wird, braucht dies
in der Quantentheorie im allgemeinen nicht der Fall zu sein. — In speziellen
Fillen, z. B. bei der Bildung von z(f).z(f)’, tritt diese Schwierigkeit
nicht auf.



. but some say he invented a convolution algebra

It is by a fundamental calling into question of classical mechanics that Heisenberg ar-
rived at this goal and went well beyond his predecessors. This questioning of classical
mechanics runs approximately as follows: in the classical model, the algebra of observ-
able physical quantities can be directly read from the group T' of emitted frequencies;
it is the convolution algebra of this group of frequencies. Since I' is a commutative
group, the convolution algebra is commutative. Now, in reality one is not dealing with a
group of frequencies but rather, due to the Ritz-Rydberg combination principle, with a
groupoid A = {(3,5); ¢,j € I} having the composition rule (3,5)-(j, k) = (¢,k). The
convolution algebra still has meaning when one passes from a group to a groupoid, and
the convolution algebra of the groupoid A is none other than the algebra of matrices
since the convolution product may be written

(ab)ie) Z (i )bGk) »

[Connes: Noncommutative Geometry]



“In Gottingen glauben sie daran (ich nicht)



so what is convolution?



Group Algebras

The convolution product. We shall now give examples of rings whose
product is given by what is called convolution. Let G be a group and let K
be a field. Denote by K[G] the set of all formal linear combinations
« =Y a.x with xe G and a, € K, such that all but a finite number of a, are
equal to 0. (See §3, and also Chapter III, §4.) If f = bex € K[G], then one
can define the product

ap=3 Y abxy=7Y <z a,by>z.
xeG yeG zeG z

With this product, the group ring K[G] is a ring, which will be studied
extensively in Chapter XVIII when G is a finite group. Note that K[G] is
commutative if and only if G is commutative. The second sum on the right
above defines what is called a convolution product. If f, g are two functions
on a group G, we define their convolution f* g by

(S*9@ = Y f(x)g(y.
xy=z

[Lang: Algebra]

this generalises to groupoids



Monoid Algebras

Let 4 be a commutative ring. Let G be a monoid, written multiplica-
tively.

Let A[G] be the set of all maps a: G — A such that a(x) = 0 for almost
all xe G. We define addition in A[G] to be the ordinary addition of
mappings into an abelian (additive) group. If «, f e A[G], we define their
product «f by the rule

@A) = ¥ a(x)B()

[Lang: Algebra]

and this to categories



Convolution

(Frg)x) =Y f(»)e(2)

x=yz

but why should computer scientists care?



Weighted Languages

(Fxg)x)= > f(y)

X=y-z

f,g:¥* — S are formal power series
S is semiring, words are finitely decomposable

language theory a la Schiitzenberger



Languages

(Frg)(x)= > f(y)

X=y-z

fg: X" —2

convolution is language product



Matrices

(F=&)(i.j) = _ f(i,k)-g(k.j)

k

fg:lxIl—=R
(i,/)) = (i, k)-(1,j) if k=1 (pair groupoid)

convolution is matrix product



Relations

(Fx&)(i.j) = \/ f(i, k) ng(k.))

k

fog:lx1—2

convolution is relational composition



Fuzzy Relations

(f = &)(i.J) = \/ (i, k) - (k. J)

k

f,g: 1 x1— Q forquantale Q

fuzzy logic a la Goguen



Incidence Algebras

(Frg)(ij) = f(i.k)-g(k.J)

k

fog:(I,<)—= R for locally finite poset category P
(i,j) = (i,k) - (1)) if k=1
(i,j) means i < j

combinatorics a la Rota



Interval Temporal Logics

(Fx&)(i.J) = \/ f(i, k) ng(k.))

k
f,g:(I,<) —2 for linear poset category (/, <)

convolution is chop modality



Separation Logic

(Fxg)m= \/ fO")nre("

n=n'®n"

f,g: (Loc — Val) =2
n&n =nuUn"if dom(n) N dom(n') =0
heaplets form partial abelian monoid (with single unit)

convolution is separating conjunction



Lambek Calculus

(Fxg)x) =\ fly)re(2)

R(x,y,2)

f,g: X —2
R(x,y,z) C X x X x X is ternary Kripke frame

convolution is binary modality



Summary

convolution carries algebraic structure in each example

typically:
if (X, R) is a relational structure and A a suitable algebra
then convolution algebra AX forms same type of algebra,
its composition is *

we are repeating similar constructions!

can we unify/explain?



Relational Convolution

(Fxe)x)=\/ f(y)-g(2)

R(x,y,z)

f,g: X—=>Q
RCXxXxX
quantale (@, <,-,1):
» (Q, <) is complete lattice
> (Q,-,1) is monoid
» composition preserves sups in both arguments



Convolution as a Binary Modality

Q%X is complete lattice

2X is even complete atomic boolean algebra
convolution * is a binary modality on QX or 2X
R is the corresponding/dual ternary Kripke frame

X and 2% are related by Jénsson-Tarki duality
for boolean algebras with operators

what are the correspondences?



Modal Correspondence Triangle

QX



Ternary Relations vs Multioperations

PXXxXxX)ZX =5 X—=>X—=22 XxX—=PX

ternary relations are multioperations X x X — PX:

R(x,y,z) & x€y0®z

we lift to © : PX x PX — PX

A@B:U{x@y\xeA,yEB}



£r-Multisemigroups

(X,®,4,r) is an Lr-multsemigroup if
oxO(yoz)=(x0y)oz
o xOy#D=r(x)={y)and {(x) ©®x = {x} =x O r(x)

it is a partial £r-semigroup if [x ® y| <1
itislocal if x©y # 0 < r(x) ={(y)
in pair groupoid
o (L)) © (U, k) o (k1) =101} =((i,J)) © U, k) © (k. 1)

o U(irj) = (i), r(ij) = U,J)
o (i,f)® (k1) #0 < r(i,j) = (k1)

all our examples are based on ¢r-multisemigroups



£r-Multisemigroups

local partial ¢r-sgs are precisely (small object-free) categories

a groupoid is local partial £r-sg X in which each x € X has inverse x*

with x ® x71 = {{(x)} and x 1 © x = {r(x)}

in pair groupoid (i,j)~! = (j, i)



Correspondences

if X is an £r-msg and @ a quantale, then QX is a quantale with
1 if E
ide(x) = hxer where E = {x | £(x) = x}
1 otherwise

if QX, Q are quantales and 1 # L in Q, then X is an /r-msg

if QX is a quantale and X an fr-msg “with enough elements"”,
then @ is a quantale



Finite Decomposability

an {r-msg is finitely decomposable if the following fibre is finite

O ) ={(r.2) [ xey© 2z}

quantales can then be replaced by semirings

the correspondences still hold



Further Examples

path categories over digraphs s, t : E — V form local partial ¢r-sgs
o paths are (vi, €1, Vo, ..., Va_1,€n-1,Vn) : VI = Vp
o © glues paths at their ends

they lift to path quantales

path cats over one vertex and n arrows give us words/weighted languages

heaplets are non-local partial ¢r-sgs
they lift to quantitative assertion quantales of separation logic

shuffle of words is proper local /r-mgs
it lifts to weighted shuffle quantales/semirings

paths 7 : [0,1] — X in topology yield local partial /r-magma
it lifts only to prequantale



Extension: Quantitative Concurrent Quantales

a concurrent quantale is formed by quantales (Q, <,-, 1), (Q,<,|[,1)
that satisfy

(wlx)- (vl z)<(w-y)l(x-2)

an interchange ¢r-msg is formed by "¢r-msgs” (X,®,1), (X,®,1)
that satisfy

(wox)o(yez)C(woy)e(xoz)

we get the usual correspondence triangle

examples are weighted shuffle and graph/pomset languages



Extension: Quantitative Modal Quantales

a modal quantale is a quantale with comain/codomain maps satisfying

do)-x=x  d(x-y)=dx-d(y))  dix) <1
dll)y=1 d(xVy)=d(x)Vvd(y)

opposite axioms for rand dor=r,rod =d
modal quantales are algebraic relatives of dynamic logics

(|x)d(y) = d(x - d(y)) etc, boxes are upper adjoints of diamonds)

we get the usual correspondence triangle

o D(f)(x) =V, d(f(y)) - duy)(x) and R =V, £(r(y)) - 0r(y)(x)

o /liftsto D and r to R

examples are quantitative dynamic logics over categories and beyond



Extension: Girard Quantales

an effect algebra is a partial £r-sg (X, ®,0) with orthosupplement
satisfying

o x®xt=0"

o x @0t # () implies x =0

a commutative Girard quantale is quantale @ with dualising element d
satisfying x\d\d = x for all x € Q

there is corresponding pair for X and PX with A = X — {01}

this links algebras of effects in quantum mechanics with
phase semantics of linear logic



...which brings us back to physics!
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